Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Rec ; 192(5): e2540, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36572951

RESUMO

BACKGROUND: Despite considerable recent reductions in antimicrobial use, the UK gamebird industry continues to struggle with production diseases during the rearing season, necessitating significant antibiotic use. This observational study investigated the presence of genes conferring resistance to ß-lactam antibiotics within industry-reared pheasants and red-legged partridges in the UK. METHODS: DNA was extracted from 60 pooled caecal samples collected from gamebirds at routine postmortem examinations during the rearing season. Genes encoding extended-spectrum ß-lactamases (ESBL) were detected by PCR and the corresponding alleles were determined. RESULTS: Over half (53%) of the samples harboured genes encoding blaTEM resistance, with blaSHV identified in 20% of samples. The blaTEM gene was more common on sites with higher antibiotic use, whereas blaSHV was predominantly found in birds younger than 5 weeks. Genotyping of the identified resistance genes revealed the presence of blaTEM-1 , blaSHV-1 and blaSHV-11 alleles. LIMITATIONS: This was a small-scale study conducted at four sites in southern England. CONCLUSION: This is the first report of the presence of ESBL genes in gamebirds, highlighting the need for further research into antimicrobial resistance in UK gamebirds.


Assuntos
Galliformes , beta-Lactamases , Animais , beta-Lactamases/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Codorniz , Reino Unido
2.
Front Microbiol ; 6: 1195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579101

RESUMO

Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...